Design of a microscopic electrical impedance tomography system for 3D continuous non-destructive monitoring of tissue culture

نویسندگان

  • Eun Jung Lee
  • Hun Wi
  • Alistair Lee McEwan
  • Adnan Farooq
  • Harsh Sohal
  • Eung Je Woo
  • Jin Keun Seo
  • Tong In Oh
چکیده

BACKGROUND Non-destructive continuous monitoring of regenerative tissue is required throughout the entire period of in vitro tissue culture. Microscopic electrical impedance tomography (micro-EIT) has the potential to monitor the physiological state of tissues by forming three-dimensional images of impedance changes in a non-destructive and label-free manner. We developed a new micro-EIT system and report on simulation and experimental results of its macroscopic model. METHODS We propose a new micro-EIT system design using a cuboid sample container with separate current-driving and voltage sensing electrodes. The top is open for sample manipulations. We used nine gold-coated solid electrodes on each of two opposing sides of the container to produce multiple linearly independent internal current density distributions. The 360 voltage sensing electrodes were placed on the other sides and base to measure induced voltages. Instead of using an inverse solver with the least squares method, we used a projected image reconstruction algorithm based on a logarithm formulation to produce projected images. We intended to improve the quality and spatial resolution of the images by increasing the number of voltage measurements subject to a few injected current patterns. We evaluated the performance of the micro-EIT system with a macroscopic physical phantom. RESULTS The signal-to-noise ratio of the developed micro-EIT system was 66 dB. Crosstalk was in the range of -110.8 to -90.04 dB. Three-dimensional images with consistent quality were reconstructed from physical phantom data over the entire domain. From numerical and experimental results, we estimate that at least 20 × 40 electrodes with 120 μm spacing are required to monitor the complex shape of ingrowth neotissue inside a scaffold with 300 μm pore. CONCLUSION The experimental results showed that the new micro-EIT system with a reduced set of injection current patterns and a large number of voltage sensing electrodes can be potentially used for tissue culture monitoring. Numerical simulations demonstrated that the spatial resolution could be improved to the scale required for tissue culture monitoring. Future challenges include manufacturing a bioreactor-compatible container with a dense array of electrodes and a larger number of measurement channels that are sensitive to the reduced voltage gradients expected at a smaller scale.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous Nondestructive Monitoring Method Using the Reconstructed Three-Dimensional Conductivity Images via GREIT for Tissue Engineering

A continuous non-destructive monitoring method is required to apply proper feedback controls during tissue regeneration. Conductivity is one of valuable information to assess the physiological function and structural formation of regenerated tissues or cultured cells. However, conductivity imaging methods are suffered from inherited ill-posed characteristics in image reconstruction, unknown bou...

متن کامل

Design and Evaluation of a Pressure and Temperature Monitoring System for Pressure Ulcer Prevention

Introduction Pressure ulcers are tissue damages resulting from blood flow restriction, which occurs when the tissue is exposed to high pressure for a long period of time. These painful sores are common in patients and elderly, who spend extended periods of time in bed or wheelchair. In this study, a continuous pressure and temperature monitoring system was developed for pressure ulcer preventio...

متن کامل

Applications of Electrical Impedance Tomography in Neurology

Introduction: Electrical impedance tomography (EIT) is a non-invasive technique utilized in various medical applications, including brain imaging and other neurological diseases. Recognizing the physiological and anatomical characteristics of organs based on their electrical properties is one of the main applications of EIT, as each variety of tissue structure has its own electrical characteris...

متن کامل

Thermo-Electro Mechanical Impedance based Structural Health Monitoring: Euler- Bernoulli Beam Modeling

In recent years, impedance measurement method by piezoelectric (PZT) wafer activesensor (PWAS) has been widely adopted for non-destructive evaluation (NDE). In this method, theelectrical impedance of a bonded PWAS is used to detect a structural defect. The electro-mechanicalcoupling of PZT materials constructs the original principle of this method. Accordingly, the electricalimpedance of PWAS c...

متن کامل

Electrical impedance tomography based image reconstruction and feto-maternal monitoring in pregnancy

Standard methods of monitoring the fetus and maternal health during labor are cardiotocogram, tocography, ultrasound and magnetocardiograpghy. These methods have some limitations in real time continuous monitoring and cause some degree of inconvenience to the patient and demand special attendance of the obstetrician also these methods cannot be used for continuous monitoring of the fetal well b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2014